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The concept of generalized parity is introduced. It allows mixing of different symmetries in 
molecular orbitals in the framework of the Parity Mixing in Orbitals method. An extension of this 
SCF calculational scheme is also discussed and the relevant secular equations are reported, 
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1. Introduction 

With the aim to incorporate dominant electron correlations into the zero-order 
approximation for the molecular wavefunction, an SCF method based on complex 
molecular orbitals was recently developed [1, 2]. In this Complex Molecular 
Orbitals (CMO) method, which is in fact a unification of the Molecular Orbital 
and Valence Bond theories of chemical bond [2], the trial function consists 
essentially of the real part of a Slater determinant which is built from complex 
spin-orbitals. 

The need for complex orbitals as building blocks in the description of molecules 
was recognized by many authors. In the early paper of L6wdin and Shull [3] it 
was found to be convenient to express natural orbitals of the triplet state of a two- 
electron system by a pair of complex orbitals - mutually complex conjugate. It 
was realized by Edmiston and Ruedenberg [4] that complex orbitals could play 
a certain role in localized molecular orbitals models. Although we are not aware 
of any actual application along this line, a similar problem of orbital hybridization 
was discussed in terms of complex orbitals by Mhrtensson and Ohrn [5], and by 
Br~indas and Mhrtensson [6], following an early suggestion of L6wdin (see 
Ref. [5]). The same topic was discussed also by Coulson and White [7]. 

First indications that complex orbitals could play a certain role in describing 
the electron correlations in molecules came from the work of Harris and Pohl [8, 9] 
on the split-shell MO treatment of hydrogen halides, and from the work of Lefebvre 
and Smeyers in a similar context [10]. It seems to be Davidson (see Ref. [10]) 
who realized that the main role of complex orbitals in such calculational schemes 
was to reproduce the correct relative sign between the main configuration in the 
wavefunction and certain excited configurations. This feature is evident also from 
the work of Bunge [11] on unrestricted projected HF solutions for two-electron 
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systems, which was followed by a series of papers by Brfindas [-12-14], and by the 
work of Berggren and Neogy (cited in [12]). 

In our opinion it was rather unfortunate that complex orbitals were initially 
introduced in the framework of the split-shell MO theories, in which they could 
play only a secondary role since dominant electron correlations were already 
parametrized by the split-shell. The fact that complex orbitals themselves could 
parametrize dominant electron correlations of the two-electron systems was 
noticed by Brfindas in [12]. Br~indas also realized [15] that the wavefunction of a 
stationary state should be real due to the time reversal invariance of the system [16], 
and that this may be simply accomplished by projecting the real part from the 
complex Slater determinant in a spirit of the projected HF scheme of L6wdin [ 17]. 
The need for such a projected wave function based on complex orbitals was 
particularly clearly stated by Brfindas and Mfirtensson in Ref. [6]. 

Complex orbitals were discussed also in studies dealing with the stability of the 
HF  solutions [18-22], and in relation to the orbital energy crossing [23, 24]. Prat 
and Lefebvre [25] introduced also hypercomplex spin-orbitals in the study of two- 
electron systems. It does not seem possible, however, to simply extend this idea 
to many-electron systems. 

In developing the SCF theory based on a real part of the complex Slater 
determinant [1], the present author was motivated by the analogy with quasi- 
particle theories of nuclear structure. The parity mixing in orbitals method, which 
is incorporated into the CMO scheme [1], was also fully taken over from the 
nuclear theory [26, 27], although orbitals of mixed parity appeared in some of the 
early works on complex molecular orbitals, [11-14, 20]. 

While the general CMO scheme is able to describe dominant electron correla- 
tions provided they are caused by the redistribution of electron pairs over orbitals 
of the same symmetry [28], the parity mixing in orbitals may parametrize electron 
correlations attributed to a transfer of electron pairs between orbitals of different 
parity, e.g. (n 2 ~ no z) and (a~ ~ a2). In this scheme the operation of taking the 
real part of a complex Slater determinant assumes a role of the parity projection 
in addition to its function of generating dominant configuration interaction (CI) 
components as in the general CMO scheme. It was also realized, [1, 2], that the 
same (or a similar) calculational ]orocedure could equally accommodate mixing 
of some other symmetry species, which are not necessarily related to the space 
inversion. In the present work this idea of the symmetry mixing in orbitals will be 
further developed by introducing the concept of generalized parity. Some flexibility 
will also be added to the earlier developed CMO and Parity Mixing schemes [1], 
which will extend the range of their applicability in the description of molecules. 

2. Parity Mixing in Orbitals "Ansatz" 

The covalent-ionic resonance wavefunction of the H z molecule may be written 
as follows, [2]" 

~, = d [ R e ( ~ ) ]  (1) 

where ~b is the complex spin-orbital of mixed parity, q~ ~Zg + ircz,, and ~b differs 



Mixing of Generalized Parity in Molecular Orbitals 8 t 

from q~ by the spin projection. The operator Re plays the role of the parity pro- 
jector since it removes the pure imaginary negative-parity component from the 
anti-symmetrized product of spin-orbitals. This idea of the parity mixing in 
orbitals was extended in Ref. [1] to many-electron closed-shell systems and an 
SCF method was developed with the following trial function 7 ~ in the variational 
procedure: 

[l (2) 
2 m=l 

q~(2) are obtained from the orthonormal basis set spin-orbitals )~,(2) by the unitary 
transformation 

~b~(2) = ~ (i)P'~-V~'x~O .) Z~,(2) (3) 
#=I  

where x.~(2) is an orthogonal matrix, 2 is the symmetry index andpo is zero or one 
depending on whether the parity of Zp(2) is positive or negative, respectively. In 
the canonical transformation (3) the basis vectors Z.(2) of opposite parity appear 
with pure imaginary relative coefficients. By definition, the operator Re in (2) 
does not act on the basis vectors Z.(2) if they happen to be complex functions since 
our aim is to generate a certain CI wavefunction in the given basis set, and not to 
modify the basis set itself. 

It should be noticed that it is irrelevant whether the positive parity or the 
negative parity components in (3) appear with the pure imaginary coefficient. 
Indeed, decomposing the spin-orbitals q~, which appear in pairs (4~b), into com- 
ponents of opposite panty, ~ = 0  + i0', we obtain: 

~b~ = ( ~ -  O'~') + i(O~' + 0 '~)  - 4~0 + i4~.. (4) 

Thus, in the pair-function (4) the negative-parity contribution is pure imaginary 
independently of whether the 0 or ~' component has negative parity. 

The secular equations of the Parity Mixing in Orbitals method were solved in 
Ref. [1] for the N~ molecule in the minimal basis set, and a significant improve- 
ment over the LCAO-MO results was fbund. Clearly, such an approach in the 
description of molecules makes sense only if the transfer of electron pairs between 
orbitals of different parity (if the molecule has an inversion center) contributes 
significantly to the electron correlations. 

A closer inspection of a few molecular wavefunctions reveals that the dominant 
Configuration Interaction component is often obtained from the main con- 
figuration by promoting an electron pair into the virtual orbital of different sym- 
metry (and not just of different parity). Thus, a dominant contribution in the IA o 
ground state CI wavefunction of the N2H2 molecule is associated with the electron 
pair promotion from the 1% orbital into the 2bg orbital [29]. Similarly, in the 
open-chain ozone ground state, which does not have an inversion center, a 
dominant contribution to the CI wave function arises from the transfer of  an elec- 
tron pair from the 4b2 to the 2bl orbital, [30]. One would expect that such contri- 
butions could be parametrized by the Parity Mixing "Ansatz" (2) if, instead of 
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parity mixing in orbitals, one allows mixing of symmetries of the more general 
type, like (a,, bo) and (bl, b2) in the examples above. This possibility will be dis- 
cussed in detail in the next section. 

3. Concept of Generalized Parity 

The parity quantum number is generally associated with the symmetry property 
of the wavefunction of a given system under the operation of space inversion. It 
has, however, a more restricted meaning in the theory of the electronic structure 
of molecules. The "parity" (gerade and ungerade) is here related to one symmetry 
operation (inversion) of the molecule's symmetry group, and it is by no means 
more fundamental than the quantum numbers (_+ 1) associated to other symmetry 
operations of the order two, like C 2 or a h. Thus, it is meaningful to speak of the 
"parity with respect to inversion", or of the "parity with respect to ah reflection", 
and so on. With such an extension of terminology the Parity Mixing in Orbitals 
method could cover a wider class of symmetry mixing in orbitals. Unfortunately, 
this terminology turns out to be somewhat ambiguous. For example, the a, and 
bg orbitals in the NzH2 molecule (C2h symmetry group) could be interpreted as 
orbitals of different parity with respect to C2 rotation only if the inversion i is 
understood as a combined operation, i.e. i -C2ah.  Since a generally accepted 
hierarchy convention for the symmetry operations does not exist, it might be 
dangerous to rely on an ambiguous concept of generalized parity without addi- 
tional specification. 

To be more specific let us consider the D2h symmetry group where all irreducible 
representations are one-dimensional so that the characters are identical with the 
"representation matrices". From the character table of this group (see e.g. 
Ref. [-31]), it can be seen that the symmetry species are labelled according to 
"parity with respect to inversion". Thus, pairs of the symmetry species (A o, A,), 
(Blo, BI,), (B2o , B2,), (B3 o, B3,) are parity-pairs, as the notation itself indicates. 
The fact that these symmetry species form parity-pairs is reflected in the direct 
product of species in each pair which corresponds to the A u representation for all 
these pairs. 

Now, by extending the concept of parity, any two irreducible representations 
of Dzh could be interpreted as a parity-pair with respect to a certain "generalized 
parity". For example, the pair (A0, B~u) may be interpreted as a parity-pair in 
which the generalized parity is defined with respect to the a(xy) operation, pro- 
vided the reflections are considered basic and all other symmetry operations 
derived, i.e. C2(x) ~ a(xy)a(xz), i =- ~(xy)a(xz)a(yz) ..... Other parity-pairs with 
respect to the same generalized parity as (Ao, B1, ) may be easily determined since 
the characters of the direct product of relevant paired species must correspond to 
those ofB~,. Thus, we find the pairs (Big, A,), (B20, B3,) and (Bag, B2u). Sometimes 
it may be difficult to decide according to which symmetry operation a certain 
generalized parity is defined. For example, if we take (A o, Blo) of the D2h group 
as a parity-pair it is not obvious from the character table which symmetry opera- 
tion (or operations !) should be considered as defining operation for this particular, 
generalized parity. However, it is not important to make such an identification 
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since the generalized parity is uniquely defined by singling out one parity-pair or 
by stating the irreducible representation to which belongs the direct product of 
symmetry species forming a parity-pair. 

In view of the result of the previous section, Eq.(4), it is clear that it does not 
matter which member of a parity-pair is interpreted as having positive (negative) 
parity. 

When dealing with two- and three-dimensional irreducible representations the 
analysis is not so simple since not all relevant information is contained in the 
character tables. In that case a parity-pair is composed not of two entire 
irreducible representations but rather of two one-dimensional symmetry sub- 
species. With some care, however, it should not be difficult to recognize parity- 
pairs in this case as well. For example, the usual parity in homonuclear diatomics 
could be defined by the pair (o-o, ~,). The rc-orbitals will then form the pairs 0zxo, 
rex,), (~y0, roy,) or (~g, 7r,), (~g, ~,), but the pairing (re0, ~,), (~s, re,) would not be 
appropriate since members of each pair differ here more than in the parity label. 
In more complicated cases it might be useful to identify the parity defining sym- 
metry operation (or operations) and construct the representation matrices 
explicitly. 

With help of the concept of generalized parity the Parity Mixing in Orbitals 
method of Ref. [1] may be applied without modification to a wider class of prob- 
lems in which the mixing of different symmetries in orbitals is desirable. Still, in 
certain cases some modification of the Parity Mixing scheme might be more 
appropriate. Let us consider, for example, the D2d symmetry group, which is 
characterized by four one-dimensional and one two-dimensional irreducible 
representations. Three different Parity Mixing schemes could be constructed from 
these four one-dimensional representations. However, the E representation stays 
out of these Parity Mixing schemes since there is no other two-dimensional 
representation to form parity-pairs with it. This means that the orbitals belonging 
to the E representation should be treated separately either in the LCAO-MO 
scheme, or by the CMO method. In that case the Parity Mixing method of Ref. [1] 
has to be modified since the trial wavefunction should have the following structure: 

~, = d[Re(~l)Re(4~2)] (5) 

where 451 and ~b 2 a r e  certain products of (generally complex) electron-pair func- 
tions built from orbitals which belong to the one-dimensional and two-dimen- 
sional irreducible representations of Ozd , respectively. The general CMO calcula- 
tional scheme based on a trial function of this kind was introduced in Ref. [2], and 
it will be discussed more in detail in the next section. The wavefunction (5) is a 
particular case of McWeeny's generalized product function [32]. 

One may go still one step further in order to reach as much flexibility as possible. 
Let us suppose that one wants to calculate the energy surface for a molecule of the 
Dzh symmetry. Let us suppose also that at a certain geometry of the molecule the 
mixing of the orbitals a s and b3, becomes very important while at some other 
geometry it is the mixing of au and b 1, which is important. If one considers (as, b3u ) 
to be a parity-pair it is clear from the character table that (a,, bl,) may not be inter- 
preted as a parity-pair with the same generalized parity as that of the pair (as, b3u). 
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In that case one could perform the calculation in the scheme based on two different 
parities ~ with the following identification of the parity-pairs: 

{~1} -= {(ao, b3,), (bl o, bzu)}, {~2} -= {(a,, bl,), (bzg, b30)}. (6) 

The corresponding SCF formalism is again a particular case of the Modified 
CMO scheme of Ref. [2]. 

By splitting the orbital space into two groups as in (6) above, and by working 
with the calculational scheme based on the trial function (5), certain inter-group 
electron correlations are removed from consideration, [2]. One should therefore 
work with such a scheme only if the energy decrease caused by a transfer of electron 
pairs between orbitals of different symmetry, which is introduced by such a splitting 
of the orbital space, is larger than the energy decrease associated to the excluded 
inter-group correlations. If the molecular phenomenology does not indicate 
which kind of electron correlation is dominant one might have to perform the 
calculation within a few different schemes to find that which is optimal. When 
calculating the energy curve or the energy surface one can afford such a one-point 
trial and error procedure in establishing the optimal calculational scheme. 

The computer program may be developed in such a way that the choice of a 
particular calculational scheme is made by the input data. The relevant energy 
expression was already derived in Ref. [2] in a somewhat different context. For 
the sake of completeness it will be shortly reviewed in the next section with the 
notation adapted for the present logical framework. The corresponding secular 
equations will also be reported. 

4. The Modified C M O  Formalism 

If a molecule is to be described by the Parity Mixing in Orbitals method in 
which all orbitals are grouped into parity-pairs with respect to the same generalized 
parity, the formalism of Ref. [1] may be used without modification. However, if 
only the orbitals of certain symmetries are paired for the Parity Mixing treatment, 
and the remaining orbitals are treated differently- for example by the CMO 
method, or by the LCAO-MO method, or even by the Parity Mixing but with 
respect to another generalized par i ty-  the appropriate calculational scheme is 
provided by the Modified CMO formalism of Ref. [2]. Thus, if the main sym- 
metry index is 2 and the degenerate sub-species are denoted by A, while k refers to 
a collection of symmetry indices whose orbitals are treated by the same calcula- 
tional procedure, the closed-shell electronic wavefunction will be written as 

= d [1-[ Re(exp(icok)~k)] (7) 
k 

with 
n~ 

~k = H l~ l ]  ~b~(2A)~(2A). (8) 
).~k A a = l  

The complex spin-orbitals ~b~(2A) are defined in terms of the orthonormal basis 
set Z~(2A) by 
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m). 

q~,(2A)= ~ uu~(2)X,(2A), uu~(2)=unitarymatrix. (9) 
u=l  

Here nx is the number of occupied orbitals of symmetry 2, and m~ refers to the 
total number of symmetry 2 orbitals in the basis set. The "parity" is not recognized 
here as a symmetry quantum number. Thus, in the calculation of the type repre- 
sented by expression (6) we would have: 21 -- (ag, b3,), 2 2 ~ (bl o , bzu), 23 ~ (a,, blu), 
�9 '~4 =-(b20, b3o), kl =()~1, "~2) and k 2 ~ (23 ,  J.4). The operator Re in (7) acts only on 
coefficients and does not alter the basis set functions if they happen to be complex 
functions. In Ref. [-2] the following energy formula was derived from (7) : 

ho(k) + Re[exp(2icOk)Dkhl(k)] 
E= Z Ek, Ek = (10) 

k 1 + Re[exp(2ico k)Dk ] 

D k is given by 

Ok= H [det,~lt7~(2)]]2 La, a~t~(2)= ~2 uu~(2)uu~(2), (11) 

where Lx is the degeneracy of the symmetry 2 orbitals. For ho(k) and hl(k ) we have 

ho(k)=2 Z Z T,v(s Z Z [#vRlapR']pu~(s 
2~k ~v 22 'ek  #v~p 

(12) 

and 

h i (k)=2  E E  Tu~()OOu~(2)+ Z Z [#v'~laP'~']f2uv('~)(2,,o('~'). (13) 

Tuv(2 ) are the "renormalized" integrals 

Tuv(2)=Ju~(2)+ I/2Z.~(2), Zu~(2I=Z' Z Z Egv2lap)/]p(~)(2 ') 
k' A" ~k" ~p 

(14) 

The summation index k' goes over all collections k except one which contains 2 
as a member. Juv(2) and [/~v2[ap2'] are one- and two-electron integrals, defined 
as in Ref. [1], Eqs.(53) and (54). Other matrices are: 

nx nA 

P#v(X) = Z U#*~(X)Uve(X), ff~.v(X)=ZU.~(~)Uvfl(~)[ff(~) -1]~ (15) 
= 1 ~ 

and 

p(ul)(2 ) = Re [Puv (2) + exp(2iCOk)Dk~?u~ (2)] 
1 + Re[exp(2iCOk)Dk] 

(16) 

where k is the collection to which 2 belongs. 
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The following secular equation may be derived from the energy formula (10): 

rn~ 

Z G~,v(2)uv*(2)=L~e~u*(2), 7 = 1,n~; # =  1,rnz; (17) 
V--1 

G(2) =/~(2) + exp(Zi(ok) Dk[L~(h 1 (k) - Ek)~(2) + (I-- ~(2))k(2)g?(2)]. 

Here I is the identity matrix, and other symbols are: 

h~.(2) = J..(2) + Z.~(2) + ~ Z [/~v2l#'v'2']p~,~,(Z), (19) 
2'~k # 'v '  

~:uv(2) =J , , (2)  + Z,~(2) + 52 Z [#vmJp'v'2']gJ~,,,(2'), (20) 
3.'ek # ' v '  

h,(k)=h,(k) + Z Z Z~o(2)YJ~o(2) (21) 
�9 ~ck  a p  

and 

Ek = Ek + Z Z Z,w(2)P(~)(2) . (22) 
Z~k ap 

In all these expressions index k refers to that collection of  symmetry indices to 
which the symmetry index 2 belongs. 

The phase angle (o k may be determined from the equation 

with 

and 

sin (2e)k + 7k) = Rk/Sk 

Rk = JDk [2Im Th(k), exp (ivk)Sk=Dk[ho(k)- h,(k)-[ 

(23) 

(24) 

ho(k) = ho(k) + Z Z Z~p(2)p~p(2). (25) 
2 e k  a p  

If a certain collection of  orbitals k is treated by the CMO method, the formulas 
here reported should be used for that index k (and the corresponding symmetry 
indices 2) without any further modification. However, for collections k which are 
treated by the Parity Mixing in Orbitals method, all formulas may be reduced to 
a real form exactly in the same way as in Ref. [1], section 5, and the relevant 
discussion will not be repeated here. The only new object that appears here is the 
Z,v(2 ) matrix, defined in terms of  p(1) matrices in (14). If  the symmetry 2 belongs 
to the collection k which is treated by the Parity Mixing method, the corres- 
ponding p(1) matrix will take the following form: 

p(lv)00 = 5ma, v[p,v()0 + Dk~Juv(2)]/[ 1 + D J  (26) 

with real p and ~ matrices as given in Ref. [1]. 
If  orbitals of a certain collection k are treated by the LCAO-MO method, 

simplifications in the formalism are obvious, (o  k = 0, D k = 1, a(2)= L k(2)=h(2), 
2ek). 

The numerical procedure in solving the above secuiar equations is the same as 
described in Ref. [1], and it is based on successive triangularization of the SCF 



Mixing of Generalized Parity in Molecular Orbitals 87 

matrix G(2). The triangularization algorithm should also contain ordering of 
diagonal elements so that the orbitals of  lowest energy are occupied when the self- 
consistency is achieved. I f  the problem of  convergence would appear, good initial 
vectors may be determined by the numerical minimization of the energy (t 0) using 
the generalized Euler angle parametrizat ion of orthogonal [33] and unitary 
matrices [34]. 

5. Conclusions 

The scope of the Parity Mixing in Orbitals method of  Ref. [1] was extended 
in this paper  by introducing the concept of  generalized parity, which allows 
mixing of  different symmetries in molecular orbitals. The resulting calculational 
scheme is a particular case of  the Projected Hartree-Fock method of  L6wdin 
[17, 35], in which the projecting of symmetry reduces to taking the real part  of  
a complex Slater determinant. Such a mixing of symmetries in molecular orbitals 
is particularly well suited to treat the problem of orbital energy crossing, as 
noticed by Pople [23]. 

The method is further extended by allowing only a certain set of  symmetries 
to be treated by the Parity Mixing in Orbitals method, while the remaining sym- 
metries are engaged in some other calculational procedure - CMO, L C A O - M O  
or Parity Mixing with respect to some other generalized parity. This Modified 
C M O  scheme, which was formulated in Ref. [2], is a particular case of  McWeeny's  
method based on generalized product  functions [32]. Since inter-group correla- 
tions are not described by this method one should carefully select the calculational 
scheme which is best suited for the particular physical situation. When it is not 
clear which kind of electron corre!ations are dominant,  one might have to try 
several schemes and choose that one which gives the best energy. 

The quality of  the wavefunctions which can be obtained by this method lies in 
between that of  the L C A O - M O  wavefunctions and those obtained by the extended 
CI procedure. Thus this method may be particularly useful for calculating energy 
curves and surfaces including the regions of  orbital energy crossing as well as those 
of  bond breaking. 
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